
Quasi-bound states induced by one-dimensional potentials in graphene

H. Chau Nguyen, M. Tien Hoang, and V. Lien Nguyen*
Theoretical Department, Institute of Physics, VAST, P.O. Box 429 Bo Ho, Hanoi 10000, Vietnam

�Received 14 August 2008; revised manuscript received 17 October 2008; published 20 January 2009�

We suggest a simple approach for studying the quasi-bound fermion states induced by one-dimensional
potentials in graphene. Detailed calculations have been performed for symmetric double barrier structures and
n-p-n junctions. Besides the crucial role of the transverse motion of carriers, we systematically examine the
influence of different structure parameters such as the barrier width in double barrier structures or the potential
slope in n-p-n junctions on the energy spectrum and, especially, on the resonant-level width and, therefore, the
localization of quasi-bound states.
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Over the last 3 years, graphene and graphene-based nano-
structures have attracted much attention both experimentally
and theoretically.1,2 This is due to the fact that the low-
energy excitations in these structures are massless chiral
Dirac fermions, which behave in very unusual ways when
compared to ordinary electrons in the conventional two-
dimensional �2D� electron gas realized in semiconductor het-
erostructures. One of particularly interesting features of
Dirac fermions is their insensitivity to external electrostatic
potentials due to the so-called Klein paradox.3 It seems that
Dirac electrons can propagate to the hole states across a steep
potential barrier without any damping.4 In this situation, the
confinement of electrons becomes quite a challenging task,
while it is very important for producing the basic building
blocks of electronic devices such as resonant structures, elec-
tron waveguides, or quantum dots �QDs�.1,2,5,6

Graphene is a single layer of carbon atoms densely
packed in a honeycomb lattice, which can be treated as two
interpenetrating triangular sublattices often labeled by A and
B. In the presence of an external electrostatic potential V, the
low-energy quasi-particles of the system are formally de-
scribed by the 2D Dirac-type Hamiltonian7,8

H = vF��� p�� + mvF
2�z + V�x,y� , �1�

where vF�106 ms−1 is the Fermi velocity, the pseudospin
matrix �� has components given by Pauli matrices, and p�
= �px , py� is the in-plane momentum. The term mvF

2 , repre-
senting the gap in the electronic spectrum, may arise from
the spin-orbit interaction,9 from the coupling between the
graphene layer and the substrate, or from the effect of cov-
ering graphene by some appropriate materials.10,11 Eigen-
states of the Hamiltonian �1� are two-component pseudos-
pinors �= ��A ,�B�T, where �A and �B are envelope
functions associated with the probabilities at respective sub-
lattice sites of the graphene sheet.

For one-dimensional �1D� potentials V=V�x� it has been
shown that the finite values of the momentum parallel to
potential barrier, the transverse momentum py, can suppress
the Klein tunneling, giving rise to the electron confinement.12

This discovery opens a way of confining electrons and, par-
ticularly, making graphene-based homojunctions and even
QDs using only electrostatic gates.13,14 Moreover, in differ-
ence from conventional semiconductor QDs, to form a

graphene-strip-based QD a single barrier seems to be
sufficient.13 Thus, 1D potentials can produce in graphene
structures the quasi-bound states �QBSs�, where the carriers
may remain for a long �but finite� time before tunneling
away. Actually,15 each QBS can be identified by a complex
energy E. Its real part Re�E� defines the position of the QBS,
i.e., the resonant energy level, while the imaginary part
Im�E� measures the width of this resonant level, which is
inversely proportional to the carrier lifetime at the QBS. The
smaller Im�E�, i.e., the shaper the resonance, the longer the
carrier lifetime, i.e., the stronger the localization of QBSs
becomes. Additionally, in the case when there exist in the
system several QBSs, the resonant-level width should be
much smaller than the interlevel spacing. So, to identify a
QBS one has to determine both the resonance level position
and the resonant-level width that in turn requires solving
Hamiltonian �1� with appropriate boundary conditions. In
this way, the Fock-Darwin states of Dirac electrons in the
graphene-based QDs have been studied.16 For a cylindrically
symmetric QD, the width of QBSs was shown strongly de-
pending on the electron angular momentum and may be as
small as 1/800 compared to the interlevel spacing. For the
graphene-strip-based QD induced by a parabolic 1D
potential,13 the QBSs seem to exist just inside the potential
barrier �either positive or negative�, whose left and right
slopes work as the “tunneling barriers” for relativistic elec-
trons �holes�. Moreover, using the transmission expression
semiclassically derived in Ref. 17, Silvestrov and Efetov13

also showed an exponential decrease in quasi-bound level
widths as the transverse momentum increases.

In this work, using the standard transfer �T� matrix, we
suggest an approach for studying the QBSs induced by 1D
electrostatic potentials in graphene. The approach is rather
simple and can be in principle applied for any smooth 1D
potential. As useful illustrations, the QBSs are in detail ana-
lyzed for two well-addressed graphene structures: double
barrier structures18,19 and n-p-n junctions.2

Let us consider a system described by the Hamiltonian
H �1�, where the confinement potential V is built along
the x direction, V�V�x�, while the motion of carriers in the
y direction is assumed to be free. To extract information
about QBSs, we need to impose special boundary conditions
in the x direction, which means that far from the barrier
the solution of H �1� should be an outgoing wave, i.e.,
the propagation is away from the barrier.16 In the T-matrix
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formalism, while the amplitudes of the left-to-right �C� and
right-to-left �D� waves on two sides, right �r� and left
�l�, of the potential barrier are related to each other as
�Cr ,Dr�T= �T11T12; T21T22��Cl ,Dl�T, the imposed boundary
conditions, implying Cr=0 and Dl=0, require that the ele-
ment T22 of the �2�2� T matrix should vanish,

T22 = 0. �2�

This is in fact the transcendental equation for determining
the complex energies of QBSs. It plays the key role in the
present work. Notice however that in practical calculations if
we are interested only in the resonant positions we should
more conveniently solve another equation, T21=0, which ex-
hibits only purely real solutions. This equation is resulted
from the well-known expression of the transmission prob-
ability T in terms of T-matrix elements, T=1− �T21�2 / �T22�2,
�see Ref. 20� and from the fact that the position of QBSs may
be thought of as the resonant energy where T may reach the
value of unity, T=1.

Thus, following the suggested approach the problem of
determining the resonant position as well as the width of
QBSs consists of �i� finding the T matrix and �ii� solving Eq.
�2�. The advantage of T matrices is that they can easily be
multiplied to build up complicated potentials in one dimen-
sion. Actually, in principle, any smooth 1D potential can be
approximately treated as a series of many steep potentials, so
that within each step the potential can be considered con-
stant. The overall T matrix to be found is then simply given
by multiplying the partial T matrices for all steep potentials.
On the other hand, for each steep potential, the partial T
matrix can be obtained from the solutions of the Hamiltonian
H �1� in the left and right sides �where the potential V is
constant� by requiring an appropriate condition of continuity
at the steep interface. The calculating procedure is the same
as in semiconductor structures,21 but the continuity here is
required only for wave functions �by matching up the corre-
sponding amplitudes�. In practice, such a procedure of con-
structing the overall T matrix for 1D potentials in graphene
can be easily realized in computer without the need of ex-
plicitly writing down solutions of the Hamiltonian �1� for
each step.

Concerning Eq. �2� for complex energies E, we would
like to note that it cannot be analytically solved even for
simple potentials such as rectangular barriers and double �
potentials. Fortunately, this equation seems to be easily
solved numerically in the complex plane of E even for more
complicated 1D potentials. To this end, we first solve the
equation of purely real energy T22=0, the solutions of which,
as mentioned above, determine the energy positions of
QBSs. Note that, on the other hand, the position of QBSs is
also defined by the real part of the solutions of Eq. �2�. Tak-
ing into account the fact that for any QBS, associated with
the complex energy E, the inequality �Im�E��� �Re�E�� is al-
ways held, clearly, the solutions of the equation T21=0 can
be appropriately used as the zero-order approximation for
solving Eq. �2� of complex energies E. Writing an obtained
solution of Eq. �2� as E=Re�E�− i Im�E�, the imaginary part
Im�E� then yields the width of the corresponding resonant
level, which is hereafter denoted for short as �, and �

� Im�E�. In this way, we have carried out numerical calcu-
lations of the position �energy spectrum� as well as the width
of QBSs for two types of 1D potentials: double barrier struc-
tures and n-p-n junctions. Before showing obtained results,
we notice that for Dirac electrons the most important param-
eter in 1D-potential problems is the transverse momentum of
incident electrons py = pF sin 	, where pF is the Fermi mo-
mentum and 	 is the incident angle. Hereafter, we will for
convenience deal with the transverse wave number ky
� py /
.4,12

Double barrier structure. For simplicity we will consider
a symmetric double barrier structure �SDBS�, where the two
barriers of identical heights U and identical widths d are built
along the x direction with the distance L between them �well
width�. Such a structure in graphene can be created by the
electric field effect using a thin insulator or by local chemical
doping.4

In the limiting case of a single quantum well �QW�, when
d→�, by solving the Hamiltonian �1� Pereira et al.12 calcu-
lated the energy spectrum of confined states in a large range
of the transverse wave vector ky for mvF

2 =0 and 10 meV. In
this case, the T matrix can be easily constructed, which gives

T22 = e−��cos 

−
2 + �2 − ��f+ + f−��� + �� + �� + ��2

�f+ − f−��� + ��
sin 	 ,

�3�

where we use the following same symbols as in Ref. 12: �
=kyL, �=EL /
vF, u=UL /
vF, �=EL /
vF, �= ��2− ��−u�2

+�2�1/2, = ��2−�2−�2�1/2, and f�= ����� / ��−u+��.
With this T22, after some simple algebraic transformations,
we can show that Eq. �2� is exactly coincident with Eq. �9�
for the energy, the key equation in Ref. 12.

In the general case of finite d, although the T matrix can
still be explicitly constructed, its expression is however too
lengthy to be shown. So, we will simply present numerical
solutions of the energy in Figs. 1 and 2 for SDBSs with
different values of d, L, and mvF

2 . The regions of semiclassi-
cal solutions, �I�–�V�, separated from each other by the
dashed lines in Fig. 1, have been drawn in the same way as
that discussed in Ref. 12. The curves in region �II� are just
the calculated energy spectrum of QBSs, plotted against the
transverse wave vector ky, for the SDBS with U=80 meV,
L=150 nm, d=100 nm, and mvF

2 =0. This energy spectrum
shows a qualitative similarity to that of confined states in a
single QW �d→�� reported in Ref. 12. Actually, calculations
performed for SDBSs with different d, ranging from 50 to
150 nm, show only a slight difference in energy spectrum.
Due to such a weak sensitivity of the energy spectrum to the
barrier width d, one can speculate that the ky dependence of
resonant energies for the SDBSs considered should follow
the same relation as that suggested in Ref. 12 for a single
QW,

En = 
vF�ky
2 + �n�/L�2�1/2, �4�

where n is an integer. This can be verified by plotting En
2

against ky
2 for the SDBS with a given L, as demonstrated in
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Fig. 1 �upper inset�. Indeed, the curves fit well with the
straight lines of Eq. �4� �En

2�ky
2� in the region of larger ky

when QBSs become strongly localized �as will be shown
later�. As for the L dependence of energies En, to the con-
trary, from the set of En for a great number of SDBSs with
different L, ranging from 100 until 1000 nm, we still do not
recognize the En�L� relation as expected from Eq. �4�. Notice
that the L dependence of the energy spectrum of QBSs in
graphene SDBSs is much more complicated when compared
to the conventional semiconductor SDBSs. This is related to
the fact that in graphene SDBSs the QBSs exist only in the
energy range close to the top of barriers, so that their energy
spectrum structure is very sensitive to changes of the well
width L, especially for small L.

Next, we examine another basic character of QBSs, the
level width �, which will be shown to mainly depend on the
transverse momentum and the barrier width. Indeed, the
lower inset in Fig. 1 demonstrates a rapid reduction in � as
the transverse wave vector ky increases in the region of small
ky for just the SDBS of d=100 nm discussed in the main
figure. The upper inset in Fig. 2 shows a similar reduction in
�, but with respect to the barrier width d, given ky
=0.025 nm−1. Notice that for larger ky and/or d the width �
is too small to be shown. The observed reductions in � may
be approximately described by the semiclassical relation �
�exp�−��kyd��, where however no defined value of the con-
stant � has been recognized. Nevertheless, since the inter-
level spacings only weakly vary with ky and/or d, such a
rapid reduction in � undoubtedly results in a strong enhance-
ment of the localization of QBSs when the transverse wave
number ky and/or the barrier width d increases.

Further, to better understand the width � as that deter-

mined by the tunneling through the classically forbidden re-
gions, for the SDBSs with different d, ranging from 100 to
140 nm, and for a given ky �ky =0.025 nm−1�, we have si-
multaneously calculated the width � �upper inset in Fig. 2�
and the transmission probability T �see Ref. 20� for one of
the barriers �the two barriers are identical�. Then, the width �
is plotted versus T as can be seen in Fig. 2 for the two states
with smallest � �see Ref. 22� from the upper inset �lines 2
and 3, i.e., the two middle lines in the energy spectrum at the
chosen value of ky; see also the lower inset in this figure�.
Clearly, the data for both state-line fit well the expected lin-
ear relation ��T. Hence, overall, Fig. 2 supports, for the
QBSs with small level widths, the same relations between
the level width �, the transmission probability T, and the
barrier width d, ��T�exp�−��kyd��, as those well known
for the ordinary electrons in conventional semiconductor
SDBSs.21

All the data discussed up to now are for the gapless
graphene, mvF

2 =0. To see the gap effect we present in Fig. 2
�upper part of the lower inset� the imaginary part Im�E�
�level width� versus the real part Re�E� �resonant position� of
the QBS energies for SDBSs with different gap widths �see
the points from top�: mvF

2 =0, 5 and 10 meV. Comparing the
three points belonging to the same resonant level in this fig-
ure, we find that while the resonant-level positions only
slightly shift up, the level widths � considerably reduce, giv-
ing rise to an enhancement of localization of QBSs, as the
gap enlarges from 0 to 10 meV. Here, notice that although
the width � is much smaller for the two middle states, the
relative reduction in � with respect to mvF

2 is almost the
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same for all the four QBSs considered. Lastly, to have an
image of the resonance as well as the level width, we plot in
the lower part of this inset the transmission probability T
versus the energy E for just the case of zero gap, mvF

2 =0,
described by the solid-square points in the upper part. Obvi-
ously, T has the sharp peaks at resonant energies and for each
peak the full width at half maximum measures the width of
corresponding level. In the cases of finite mvF

2 , the resonance
peaks are much narrower.

n-p-n junction. Let us now consider the 1D-potential bar-
rier built along the x direction as shown in Fig. 3 �inset�,
where the motion of electrons �holes� in the y direction is
assumed to be free. This potential approximately models a
n-p-n junction in graphene2,23 and it is characterized by the
three parameters: the barrier height �U0�, the mean barrier
width �W�, and the width of the n-p and p-n interfaces �d�.
First, in the way similar to that discussed in Refs. 12 and 13
we can qualitatively analyze the semiclassical dynamics of
Dirac fermions in the potential of interest. Solutions can be
then assumed consisting of six types as diagrammatically
demonstrated by the regions �I�–�VI� in Fig. 3. However, we
will focus in this work only on the type �IV� solution, which
describes the QBSs with resonant positions defined by the
condition


vF
2
2ky

2 + m2vF
4 � E � U0 − 
vF

2
2ky
2 + m2vF

4 �5�

�region �IV� in Fig. 3�. It is readily clear from this condition
that for a given U0 the QBSs exist only in the range of small
transverse wave number ky. The basic characters of these
QBSs can be now examined using the T-matrix approach.

For the potential studied, as mentioned above, the T ma-
trix can be constructed by approximating the barrier as a

series of N steep potentials along the x direction. It seems
that such a calculating procedure is not only easy to be real-
ized with a computer but also guaranteed to have a fast con-
vergence. For example, for the barrier of U0=80 meV, W
=150 nm, and d=100 nm discussed below, to achieve a
practically full convergent result, the number of steps N is
not larger than 200. Using the obtained T matrix, we numeri-
cally solved Eq. �2� �or T21=0 for only resonant positions as
noted above� that provides the energy spectrum of QBSs
�Fig. 3� as well as the resonant-level widths �Fig. 4�. In re-
gion �IV� of Fig. 3, the resonant levels, appeared at small
�but nonzero� ky, slightly bend down as ky increases that
indicates the hole nature of the QBSs observed. At the same
time, the width of these resonant levels, �, fast reduces with
increasing ky as can be seen in Fig. 4�a�. An analysis shows
that for typical QBSs in the middle of energy spectrum, i.e.,
the states 2–4 in Fig. 4�a� �see Ref. 22� the ky dependence of
� approximately obeys the semiclassical evaluation

� � exp�− �vF
2ky
2d/U0� . �6�

As a consequence of such an exponential reduction, the
width of resonant levels will quickly vanish at the boundary
�dashed line in Fig. 3�, where there is a continuous crossover
from QBSs in region �IV� to the bound hole states �with
purely real energies� in region �V� �Fig. 3�. The latter region
�V� is defined by the semiclassical condition

− �vF
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4�1/2 � E � min��vF
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4�1/2,U0
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4�1/2� .
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For considered n-p-n junctions in graphene, the slope of
potential in the n-p and p-n interface regions, measured by
the magnitude of the field U0 /d, plays an exceptional role in
creating QBSs of the Dirac fermions.13,17 This is already
clear in Eq. �6�, where U0 /d appeared in the exponent of �.
To learn more about the role of this parameter, we carried out
calculations of E for the structures with different d, keeping
U0 fixed �U0=80 nm�. Certainly, in the limit of a rectangular
barrier, d→0, there exists no QBSs, although the transmis-
sion probability may exhibit a weak resonance.24 A finite d
effectively induces QBSs and the larger d is then the smaller
the resonant-level width of these states becomes. This can be
seen in Fig. 4�b�, where we plot Im�E� versus Re�E� for
barriers with different d, ranging from 50 �top� to 100 nm
�bottom�. The figure shows that while an increase in d leads
to only a slight shift down of resonant positions �Re�E��, and
therefore a little variation in interlevel spacings, it causes a
strong reduction in resonant-level widths �Im�E��, and con-
sequently a strong enhancement of the localization of QBSs.
The reduction in ���Im�E�� with increasing d can be more
clearly seen in Fig. 4�c�, where except curve 5, associated
with the highest line in the energy spectrum, the data again
roughly show the exponential dependence of Eq. �6�. Notice
that, for the potential studied since the left and right slopes
work as the tunneling barriers, the distance d plays then the
role somewhat similar to that of the barrier width in the
SDBS model considered above. Both weakly influence the
resonant positions, but strongly affect the resonant-level
width, and therefore strongly affect the localization of QBSs.
Another close correspondence can be found between the
mean barrier width W in the n-p-n junction potential �see
Fig. 3� and the well width L in the SDBS model. Both es-
sentially define the energy spectrum structure but weakly in-
fluence the resonant-level width of QBSs.

In conclusion, we have suggested an approach for study-
ing the QBSs induced by one-dimensional potentials in
graphene. The approach is based on the standard T-matrix
method and distinguished by its simplicity. Using this ap-
proach we have examined the main characters, energy spec-

trum and resonant-level width, of QBSs formed in two types
of graphene nanostructures: double barrier structures and
n-p-n junctions. For SDBSs with infinite barrier widths d,
the T-matrix approach leads to the same equation for the
energy spectrum of confined states as that reported in Ref. 12
for a single QW. For SDBSs with finite d, we have shown an
exponential decrease in the resonant-level width, and there-
fore a strong enhancement of the localization of QBSs, when
the transverse momentum and/or the barrier width increases.
For the strongly localized QBSs the observed relations be-
tween the level width, the transmission probability and the
barrier width are similar to those for ordinary electrons in
conventional semiconductor SDBSs. For n-p-n junctions, we
have shown the quasi-bound hole states, which exist only in
the structures with a finite slope of the potential in the n-p
and p-n interface regions and only in the region of small
transverse momentums. It was also shown that the resonant-
level width exponentially narrows and therefore the localiza-
tion of QBSs is exponentially enhanced when the potential
slope decreases and/or the transverse momentum increases.
The potential slopes in n-p-n junctions play the role similar
to the two barriers in SDBSs. For both structures studied the
gap in electronic spectrum is one more reason for enhancing
the localization of QBSs. This study of gap effect is however
rather qualitative since, although the energy gap is a desired
property for integrating graphene-based nanoelectronic de-
vices, various aspects of the problem such as how to produce
a gap and how the gap mutually affects other properties of
material are still under discussion �see Refs. 10, 11, and 25
and references therein�. Finally, it is worth mentioning that
the T-matrix approach suggested is quite general and should
be applicable to a wide range of 1D potentials in calculating
different fundamental quantities, other than those studied in
this work, such as the conductance and the noise spectrum
density.
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